PV & CPV: Product Standards

Mani G. Tamizh-Mani Photovoltaic Testing Laboratory (ASU-PTL)

manit@asu.edu

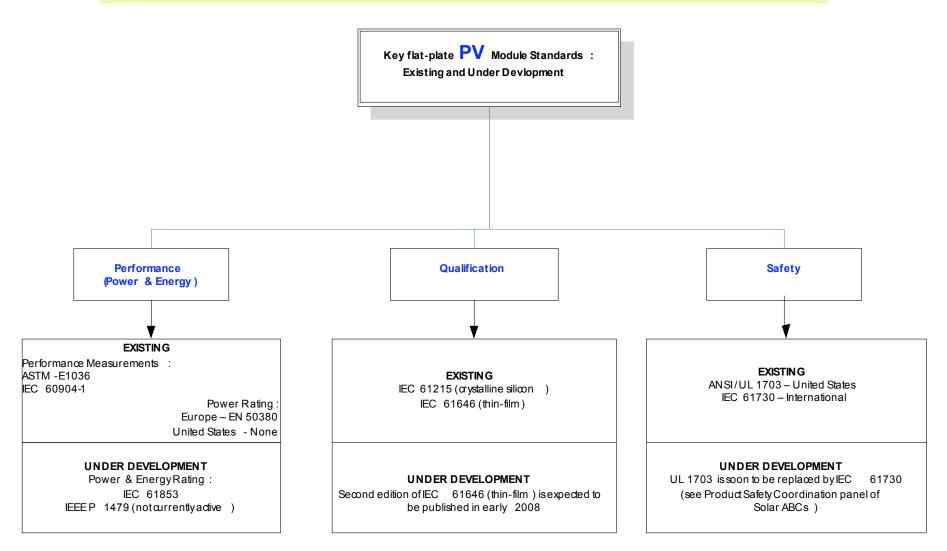
Solar Power 2007 – Solar ABCs Stakeholders Meeting, Long Beach, CA – 27Sep07.

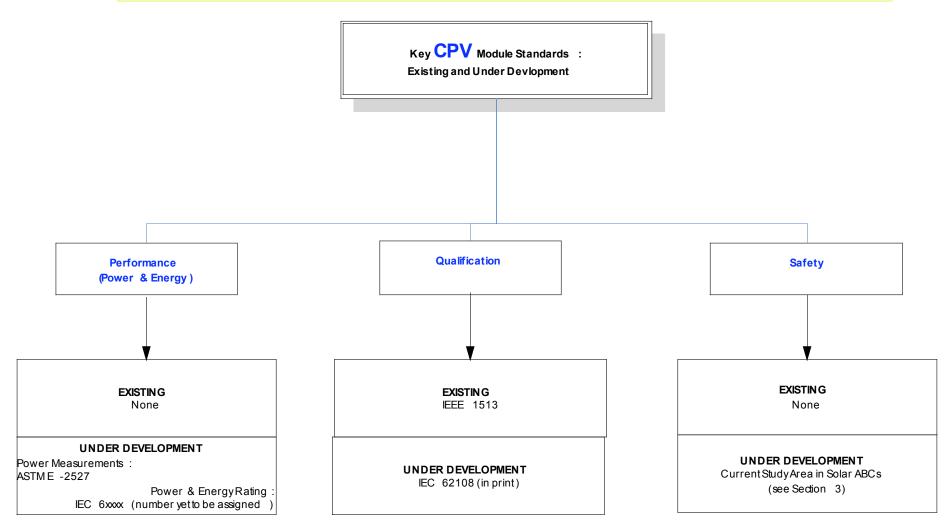
Outline PV & CPV Product Standards:

- Major Standards Organizations
- Existing and Under Development
- Current Study Areas
- Potential Study Areas GAP ANALYSIS

PV & CPV Product Standards: Major Standards Organizations

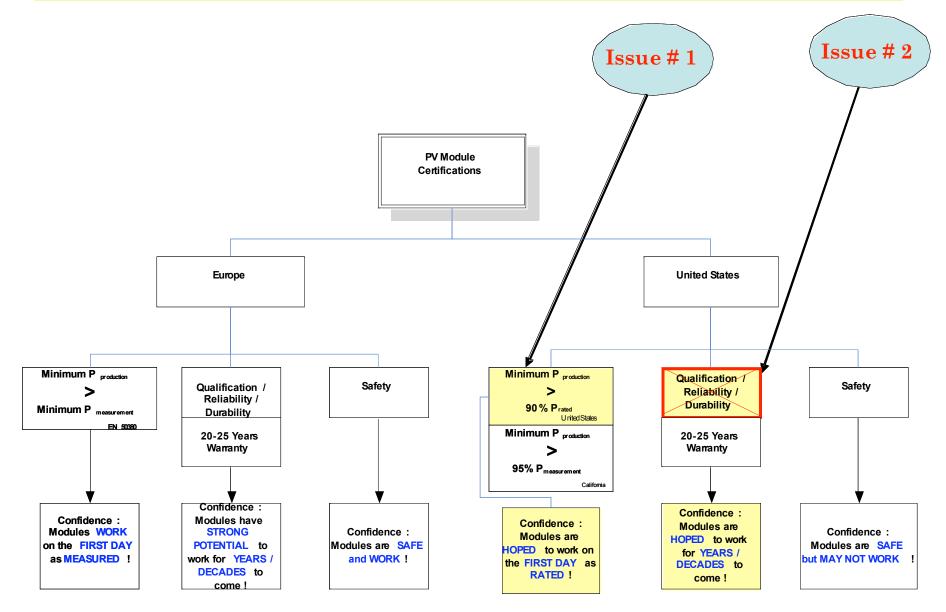
- 1. ASTM International: American Society for Testing and Materials
 - Technical Committee E44.09: Photovoltaic Electric Power Conversion
 - Major use in PV industry: Test Methods
- 2. IEEE: Institute of Electrical and Electronics Engineers
 - Standards Coordinating Committee SCC21: Fuel cells, Photovoltaics, Dispersed Generation and Energy Storage
 - Major use in PV industry: Grid interconnection, Pass/Fail qualification for reliability,
- **3.** IEC: International Electrotechnical Commission
 - **Technical Committee 82: Solar Photovoltaic Energy Systems Working Groups (WG)**
 - WG 1 : Glossary
 - WG 2 : Flat-plate PV (PV)
 - WG 3 : Systems
 - WG 6 : Balance-of-system components
 - WG 7 : Concentrator PV (CPV)
 - PV industry use: Test methods, pass/fail qualification for both reliability and safety, inverter??, ..., System??, ...
- 4. UL: Underwriters Laboratories
 - Technical committee:???
 - Major use in PV industry: Safety standards




Solar ABCs - ASU

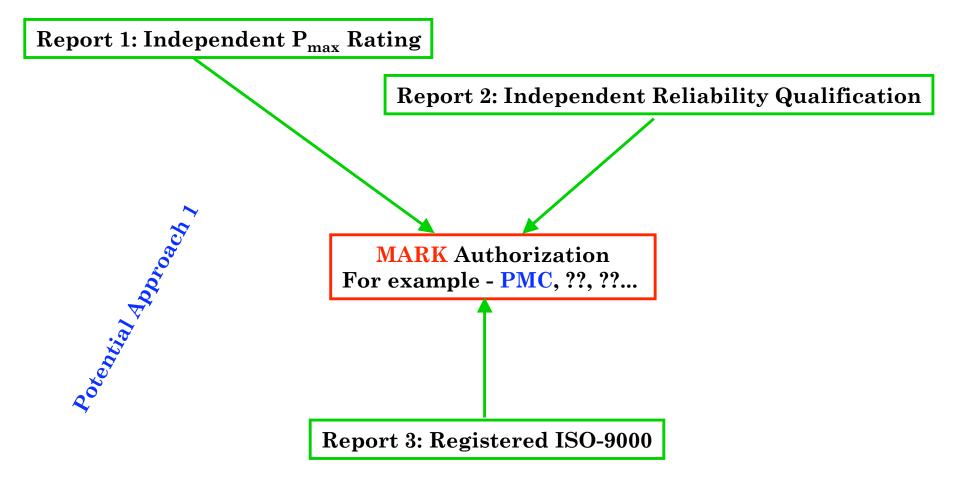
PV Product/Module Standards: Existing and Under Development

Existing and Under Development

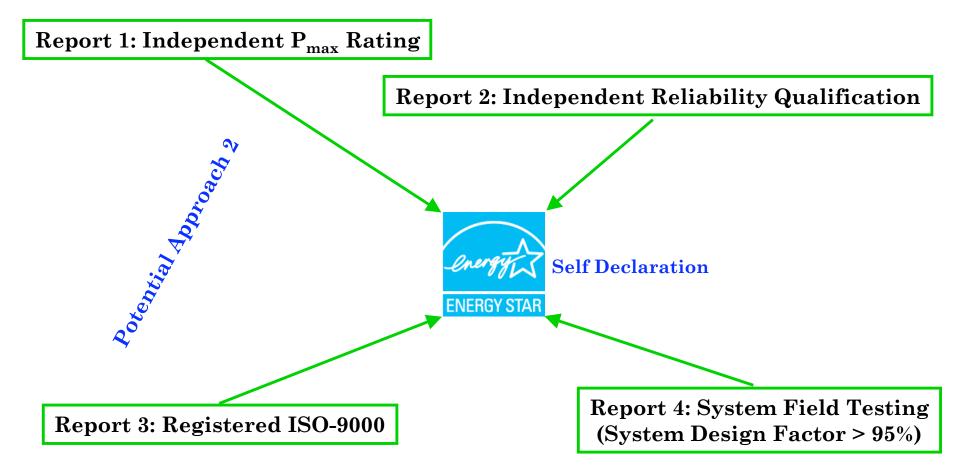


PV & CPV Product Standards: Current Study Areas

1. PV Cell Performance Study


- Assist flat-plate PV manufacturers:
 - **I**ssue: No supply chain standard available
 - ☑ Identifying suitable alternative sources and establishing supply chain
 - ✓ Eventual Goal: A standard for PV cell supply chain pre-qualification
 - ✓ Deliverable in this study area: Develop standardized test procedures and minimum requirements to pre-qualify PV cells through evaluating the performance and form factor of PV cells
 - To be recommended/implemented in an IEEE/IEC standard development
- 2. CPV Safety Study
 - Assist CPV manufacturers:
- **E** Issue: No safety standard available
 - ✓ Eventual Goal: A standard for CPV safety testing
 - ✓ Deliverable in this study area: Develop standardized test procedures and minimum requirements (to be implemented in an IEEE/IEC standard development) for evaluating the safety of Concentrator PV products (ala UL 1703/IEC 61730/IEEE 1513/IEC 62108).
 - To be recommended/implemented in an IEEE/IEC standard development

PV & CPV Product Standards: GAP ANALYSIS - Potential Study Areas/Issues

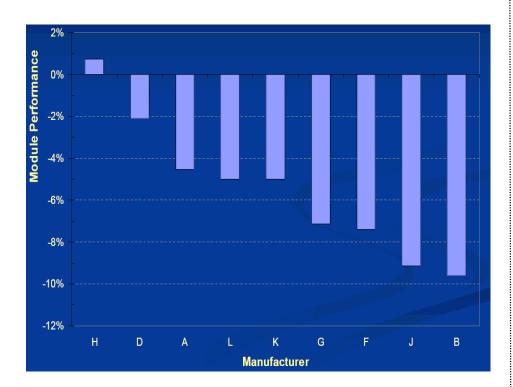


Solar ABCs - ASU

Issue # 3 MODULE Label: No MARK (logo) for Performance

Issue # 4 SYSTEM Label: No MARK (logo) for Performance

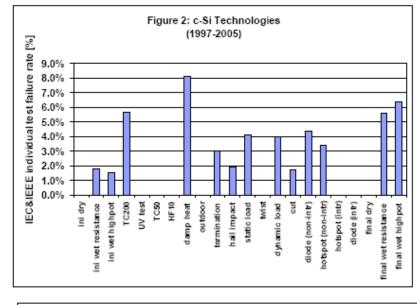
(ENERGY STAR mark issued by EPA/DOE approved partners such as manufacturers or private labelers/distributors/integrators)

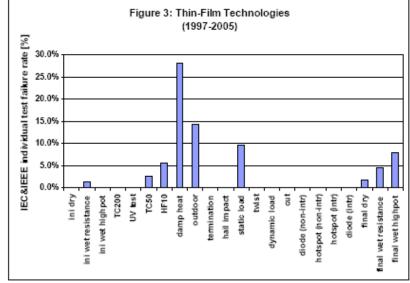

QUESTIONS?

manit@asu.edu

Solar ABCs - ASU

Slides for Discussion


Issue # 1: Objective Evidence $P_{marketplace} \rightarrow -10\%$



Rated vs. Measured (Source: Florida Solar Energy Center)

Issue: All manufacturers are paid equal!

Issue # 2: Objective Evidence Significant failure rate in qualification testing

Study Area: PV Cell Performance Standard

> Develop procedures and requirements for the pre-qualification of PV cells to establish:

• a cell (supply chain) acceptance protocol for the MODULE (end product) manufacturers

Study Area: CPV Safety Standard

- > Develop procedures and requirements for the safety qualification of CPV modules for:
 - Low concentration (for example, <10X and NOCT <50°C)
 - Testing requirements are less strenuous (For example, similar to flat-plate)
 - High concentration (for example, >10X or NOCT >50°C)
 - Testing requirements more strenuous

(For example, CPV design qualification as pre-requisite with some additional tests from flat-late safety standard or vice-versa)

Study Area: PV Cell Performance Standard

A cell (supply chain) acceptance protocol for the MODULE (end product) manufacturers

Change in cell technology

r modifications such as:

- metallization materials and/or process,
- anti-reflective coating material,
- type of diffusion process
- semiconductor layer materials,
- order of cell process if the change involves the metallization system,
- change of manufacturing site of the solar cells not under the same QA system,
- use of cells from a different manufacturer and
- major reduction in cell thickness (greater than 25%).

Repeat: Thermal cycling, 200 cycles (10.11), Damp heat (10.13), Outdoor exposure (10.8), and Hot spot endurance (10.9).

IEC retests for the cell change in a module

Purpose:

To determine if the cells in the module are susceptible to breakage during shipping, installation and use.

Apparatus

- 1. Equipment for performing dynamic loading.
- 2. Equipment for thermal cycle test per IEC 61215 Section 10.11
- 3. IR Camera

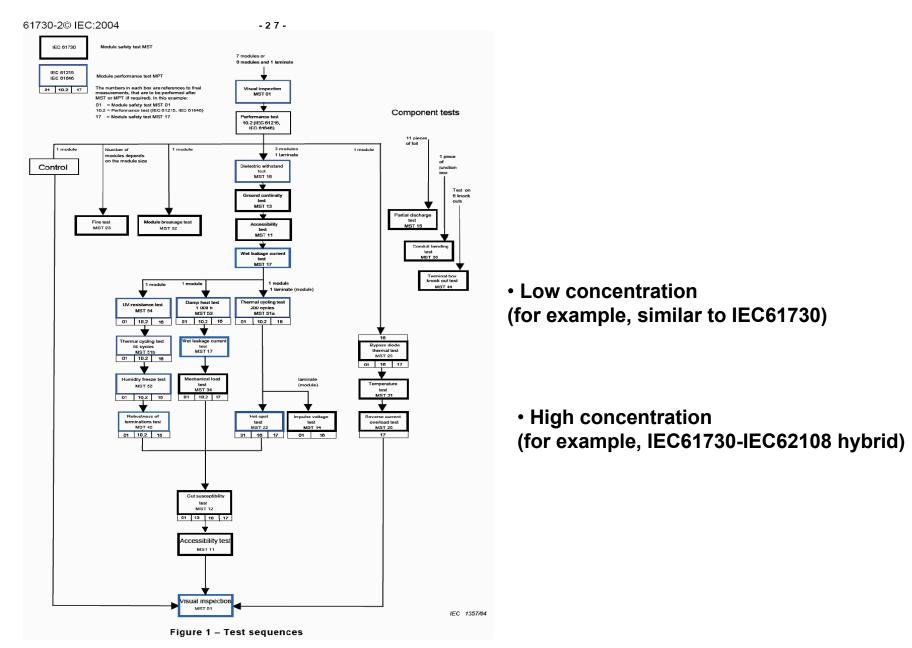
Initial Measu rements

- 1. Take an I-V Curve of the module, measuring Pmax.
- 2. IR scan at twice Isc to identify cracked cells. Do we need a procedure for IR scanning?

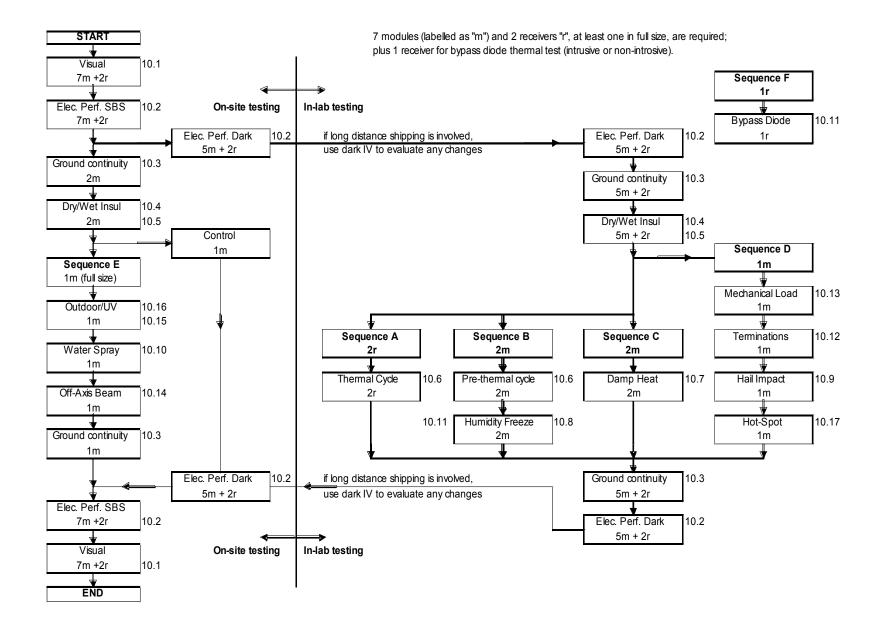
Procedure

- 1. Place the test module in the dynamic loading system and cycle it 1000 times using a maximum pressu re of 15 to 20 lbs/ft² and a rate of 2 to 3 cycles per minute.
- 2. Redo the I -V curve looking for power loss and the IR scan looking for broken cells. Note the number of cells broken by the cycling.
- 3. Complete 25 thermal cycles between -40 and + 85 C without current flow.

Final Measurements


- 1. I-V Curve
- 2. IR scan at twice Isc to identify cracked cells. Identify the number of cracked cells.

Requirements


Power loss o f less than 5% from in itial.

Other potential tests for the cell change in a module

Study Area: CPV Safety Standard

IEC61730 – PV Module Safety Qualification

IEC62108 – CPV Modules and Assemblies: Design Qualification and Type Approval

	Sample No.	1	2	3	4	5	6	7	8	9	10	
IEEE P1513	Sample Config	CPV System	CPV System		Receiver 2	Receiver 3	Receiver 4	Receiver 5	Receiver 6	Receiver 7	Receiver 8	UL1703
5.1	Visual inspection											
												19. Temp
5.2	Electrical Perf.											20. IV
												21. Leakage I
												22. Strain
5.3	Ground continuity											25. Ground
5.4	Dry hipot											26. Dielec
5.5	Wet resistance											
												28. Reverse I
5.7	TC250 (-40~110)											
5.7	TC100 (-40~110)											
5.1	Visual inspection											
5.8	HF20 (-40~85/85)											
5.10	Damp Heat (85/85)											
5.14	Outdoor Exposure											
5.4	Dry hipot											
5.11	Hail Test											
5.12	Intrusive Bypass Diode test											
5.5	Wet resistance											
5.1	Visual inspection											

Potential Tests for the High Concentrator PV Standard (highlighted cells)

Figure 4: Potential tests for the proposed high concentration CPV safety standard

• A global standard to test and certify all the high concentration CPV systems would be practically impossible and a case-by-case approach needs to be implemented by the certification bodies

• The hybridized safety standard may set the minimum requirements to be met by the high concentration system before any further safety investigation is carried out by the certification bodies