Overview of Arc-Faults and Detection Challenges

Jay Johnson Sandia National Labs (505) 284-9586, jjohns2@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2009-2801P

Jay Johnson

2/8/2011

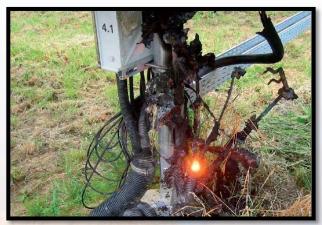
Slide 1 of 5

Arcing in PV Systems

How are PV fires created?

- Discontinuities in the PV conduction path initiate electrical arcing
- The arc creates a high temperature plasma which ignites surrounding materials
- What are the dangers?
 - Loss of property
 - Injury or death for building occupants, business owners, and firefighters
 - Reduced PV market penetration due to bad publicity for the PV industry

How prevalent is the problem?


- Difficult to quantify the number of PV-initiated fires
 - · Solar companies do not publicize arcing events
 - · No widespread reports on residential fires
 - Few documented fires typically commercial installations
 - Buerstadt, Germany Commercial building
 - Mont Soleil, Switzerland 560 kW plant
 - Bakersfield, CA Target store

What is being done about it?

- 2011 National Electrical Code Article 690.11: Arc-Fault Circuit Protection (Direct Current)
 - 80 V or greater PV systems on or penetrating a building must have a listed Arc-Fault Circuit Interrupter
- UL 1699B: Photovoltaic (PV) DC Arc-Fault Circuit Protection
 - Provides the Arc-Fault Circuit Interrupter (AFCI) testing methodology

Rooftop fire in Buerstadt, Germany.

Arcing at the combiner box [1].

[1] Kremer, P. "Arcing potential in fuses: missing standards for adequate testing of fuses in PV application," International Workshop: Arcing in Photovoltaic DC-Arrays, Burgdorf, Switzerland, 8-31-2007.

Jay Johnson

2/8/2011

Slide 2 of 5

Arcing in PV Systems

Why are PV systems susceptible to arcing?

- PV systems have high DC voltages (600+ V)
- No zero-crossing like AC systems PV arcs do not selfextinguish
- More systems are aging and exposed to wind, weather, rodents, trees, etc.

Where does arcing occur?

- Connections in the array
 - Fuses
 - Inter-module connectors
 - Inverters
- · Connections in the module
 - Junction boxes
 - Bypass diodes
 - Cell-to-cell connections
 - Cell-to-busbar connections

Burned Busbar [3]

Combiner box in Burgdorf [2]

Failed Bond in Junction Box

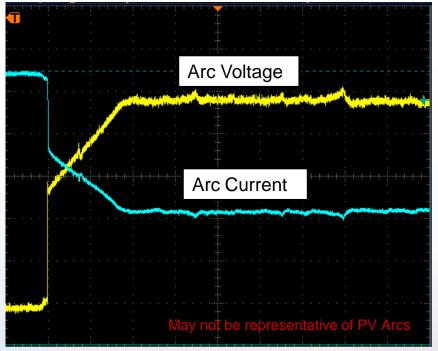
Destroyed Junction Box from Arc [2]

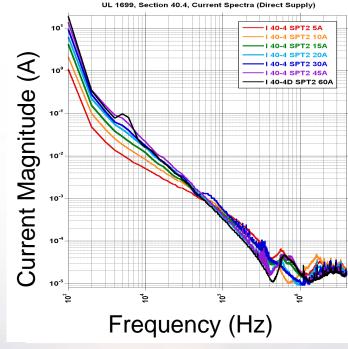
[2] Haeberlin, H. "Arc Detector for Remote Detection of Dangerous Arcs on the DC Side of PV Plants," International Workshop: Arcing in Photovoltaic DC-Arrays, Burgdorf, Switzerland, 8-31-2007.

[3] Cotterell, M. "Arcing potential within PV Module contacts and solutions," International Workshop: Arcing in Photovoltaic DC-Arrays, Burgdorf, Switzerland, 8-31-2007.

Jay Johnson

2/8/2011


Slide 3 of 5


Electrical Arcing Behavior

What is the electrical behavior of an arc?

- In series arcs, voltage surges and current drops [4] •
- The arcing frequency content is approximately 1/f (pink) noise. •

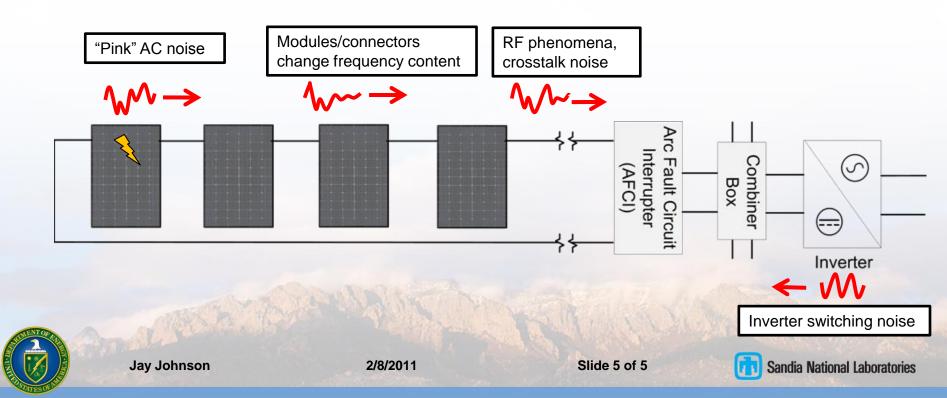
Arcing in Frequency Domain [5]

[4] Hastings, J. K., Zuercher, J.C. and Hetzmannseder, E., "Electrical Arcing and Material Ignition Levels," SAE 2004 World Congress & Exhibition, Detroit, MI, March 2004. [5] Brazis, P. W. Jr., Private Transaction with Underwriters Laboratories.

Jay Johnson

2/8/2011

Slide 4 of 5



Detection Difficulties

Some proposed AFCIs use frequency content of the string for detection

Two challenges with remote arc detection

- 1. Missed or delayed detection due to filtering in PV components (e.g., modules, connectors, bypass diodes)
- 2. Nuisance tripping due to noise from electromagnetic coupling (crosstalk), inverter switching, and radio frequency (RF) effects

