High Wind Loads and Model Code for PV Arrays

Solar ABC’s Project

10/30/2009

Colleen O’Brien, PE
BEW Engineering

Stephen Barkaszi, PE
Florida Solar Energy Center

Problems:

• Existing codes lack guidelines for PV systems

• Designers use codes intended for buildings

• Many interpretations are possible for same design

• Many PV systems are significantly over-designed or under-designed to withstand expected wind speeds.
High Wind Loads and Model Code for PV Arrays

Approach

- Phase I (complete): Review the most widely used code (ASCE-7) to develop a recommended approach to calculate wind loads on PV modules mounted parallel to the roof surface.

- Phase II: Expand code based approach to sloped PV systems. Ideally conduct wind tunnel testing, but need up to $500K, which is not in ABC budget.

Results – PV Parallel to Roof Surface

- We outline ten (out of ~30!!) justifiable approaches for the same PV system, based on ASCE-7, Section 6

- Pressure on modules
 - Pressure = q*(GCp-GCpi)
 - q = velocity pressure; not a point of contention – depends on building shape, surrounding terrain, wind velocity
 - GCp, GCpi = external and internal pressure coefficient (pressure above and below PV) – hundreds of choices, none clearly for PV
High Wind Loads and Model Code for PV Arrays

Results – PV Parallel to Roof Surface, 90 MPH

Location: Phoenix, AZ (90 mph gust wind speed)
Terrain: Open desert, very few buildings.
Building height: 15’ at the eave, 25’ at the ridge
Building shape: Gable roof with a 20° pitch
Building type: Residential
Building dimensions: 60’ (along the ridge) x 30’ (perpendicular to the ridge)
Module orientation: Parallel to roof, 5° above roof surface, minimum 3 ft from the roof edge.
PV array area: 100 square foot array (10’ x 10’)

C&C = PV modules, clips, fasteners that secure PV module, individual members of rack (on "large" rack)
MWFRS = loads on "large racks" and reaction force from rack at roof penetrations
GCpi: up to engineer’s discretion; ± 0.1 to ± 0.3 is reasonable for systems with limited restrictions to air flow below module, but no data available to support this.

Some AHJ’s or engineers may require use of ± 0.55 but it is more likely that many will accept a GCpi as low as 0.

Results are conservative because they don’t account for pressure equalization, which could reduce loads by ~80%; ASCE method does not address this
Some PV modules rated for max 45-50 psf
Lack of test standards for dynamic & nonuniform loading

High Wind Loads and Model Code for PV Arrays

Recommendations for Future Work

• Develop analytical approach for sloped PV

• Publish Solar ABC guidelines to broader audience – peer review

• Develop specifications for custom / private wind tunnel testing procedures for PV systems

• Generic wind tunnel testing and updates to ASCE to address loads on roof-mounted PV is drastically needed:
 - ASCE will over-predict loads for some systems = increased system cost
 - ASCE will underpredict loads for some systems = possible failures

• How to participate
 - Locate or share applicable wind tunnel data
 - Identify sources of funding for wind tunnel testing - $200 – 500K
 - Email suggestions to barkasz@fsec.ucf.edu or colleen.obrien@bewengineering.com.