

Photovoltaic System Energy Performance Evaluation

Alex Mikonowicz

PowerMark Corporation

and

Gobind H. Atmaram, Ph. D.

Florida Solar Energy Center/University of Central Florida October 1, 2010

Solar America Board for Codes and Standards

Objectives

- Develop/modify simulation model to estimate more accurate hourly PV system power generation and energy prediction (within 3%) over selected period, typically annual (or TMY), by using:
 - More detailed PV module characteristics (per IEC 61853, part 1).
 - PV system specific components specifications
 - Specific inverter efficiency curve

Solar America Board for Codes and Standards Collaborate • Contribute • Transform

Scope

- Hourly/daily performance evaluation can be compared with actual performance data using actual hourly inputs to check the system is functioning well and that there are no failed modules or components.
- Annual performance evaluation for TMY can be used as PV system energy rating and for comparison of different PV systems.
- Monthly system performance evaluation can be used to determine month-to-month variations to determine the auxiliary power or battery storage needed.

Approach

- Model uses detailed PV module maximum power matrix at seven irradiance levels and four module temperatures
- Model is applicable to all PV cell technologies, including X-Si, TFS, CdTe, CIS, GaAs, others.
- Model calculates DC and AC wiring and component power losses more accurately by using their specifications rather than "ball park" value of the power losses.
- Model uses specific inverter efficiency curve instead of generic inverter efficiency curve.

5

Solar America Board for Codes and Standards

Approach (Cont'd)

 Year-to-year variations in solar irradiance accounted by:

Corrected Predicted Annual Performance (kWh) = Predicted Annual Performance with TMY data x (Actual Annual Irradiance / TMY Annual Irradiance)

Solar America Board for Codes and Standards

Collaborate • Contribute • Transform

Input Parameters for Simulation Module

- Typical Meteorological Year (TMY) data —
 including solar irradiance, ambient temperature,
 wind speed, wind direction (ambient
 temperature, wind speed and wind direction are
 needed to calculate PV module temperature), etc.
- PV module characteristics —
 i.e., module power matrix at seven irradiance
 levels and four module temperatures (per IEC Std.
 61853, Part 1, provided by module manufacturer
 or generated in a test lab)

7

Solar America Board for Codes and Standards IEC 61853-1: PHOTOVOLTAIC (PV) MODULE PERFORMANCE TESTING AND ENERGY RATING -Part 1: Irradiance and temperature performance measurements and power rating P_{max} , I_{sc} , V_{oc} , and V_{max} versus Irradiance and Temperature Irradiance (W/m²) **Module Temperature** Spectrum 15°C 25°C 50°C 75°C 1100 AM1.5 NA 1000 AM1.5 800 AM1.5 600 AM1.5 400 AM1.5 200 AM1.5 100 AM1.5 NA NA

Indoor & Outdoor Test Methods

Input Parameters for Simulation Model

- PV array layout including array tilt angle, number of modules in series and parallel
- DC wiring and component specifications
- AC wiring and component specifications
- Specific inverter efficiency curve

