Arc Fault PV Industry Activities, and Testing and Modeling

Jason Strauch

jestrau@sandia.gov, 505-284-6114

Sandia National Laboratories Microsystems & Engineering Sciences Applications (MESA)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2009-2801P

Jason Strauch

2/8/2011, Slide 1 of 6

Sandia National Laboratories

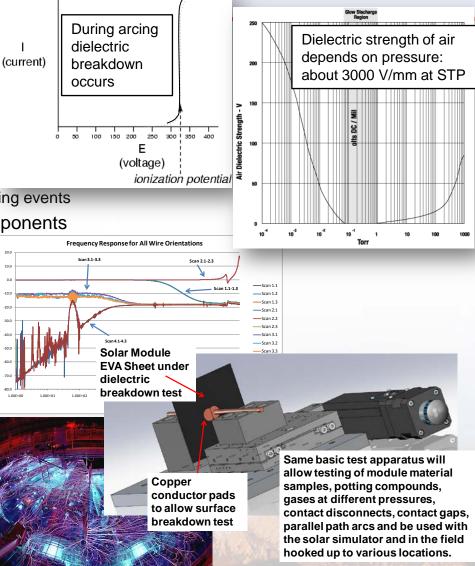
Current PV Industry Activities in Arc Fault

With the implementation of NEC 690.11, and UL1699B governing testing of Arc Fault Circuit Interrupters (AFCI), the PV Industry will be required to make hardware changes that adds to the \$/W costs.

- To reduce PV system costs, inexpensive arc fault detectors and circuit interrupters must be available to the market.
- Sandia National Laboratories is actively working and partnering with Industry to reduce these cost by understanding arcs, signal propagation, and possible detection challenges.
 - Inverter manufacturers
 - Module manufacturers
 - PV electrical component manufacturers
 - AFCI manufacturers

2/8/2011, Slide 2 of 6

Arc Fault Testing


(Bb

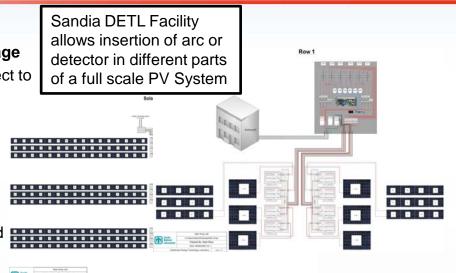
- Conditions that allow arcing
 - Materials for dielectric strength
 - Geometry
 - Voltages/potentials, boundary conditions
- Introduction of simulated arcs into PV systems
 - Measure electrical frequencies present during arcing events
- Filtering created by PV modules and other components

Testing facilities

- Manufacturers' laboratories
- Standard developers' labs
- National labs
- Sandia National Laboratories facilities:
 - PSEL: Photovoltaic Systems Evaluation Lab
 - Tests for module and cell manufacturers
 - Pulsed Power, Z machine
 - The big 'daddy' of man made arc generators
 - Understanding of the physics of arcs
 - DETL: Distributed Energy Testing Lab

Sandia National Laboratories

2/8/2011, Slide 3 of 6


Arc Fault Testing, Sandia DETL Facility

Distributed Energy Testing Lab, DETL:

- Many combinations of grid tied generation, loads and storage
 - Inverter, AFCI and component manufacturers able to connect to PV arrays at any number of insertion points
- Advanced R&D
 - System level performance and reliability testing
 - Component interoperability testing
- Advanced Power Electronics Components and Systems
 - Solar Energy Grid Integration Systems (SEGIS)
 - Controllers for distributed grid equipment based on new and existing standards
 - Advances in inverter design, integration and manufacturing through partnerships with Industry
 - · Long-term inverter performance characterizations

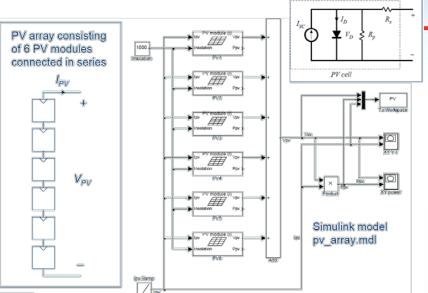
Technology Solutions for Communications and Security

- Secure Supervisory Control and Data Acquisition (SCADA) applications
- Technology development and applications capable of supporting multiple communications protocols
- Solar Standards and Codes
 - Development of new procedures for performance and reliability testing
 - Assuring accountability, applicability and metrics of new standards development

Jason Strauch

2/8/2011, Slide 4 of 6

Sandia National Laboratories

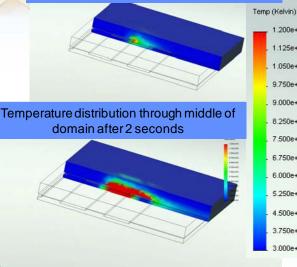

Arc Fault Modeling

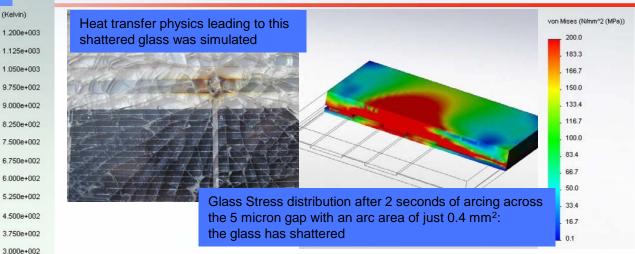
Frequency modeling

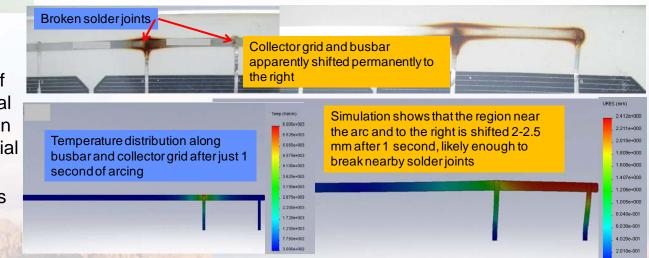
- Development of cell, module, and array models for AC studies
- Studies investigate attenuation effects of PV components

Electrical modeling

 Simulation of current, voltage, and resistance changes preceding and for the duration of the arcing event




Source: http://ecee.colorado.edu/~ecen2060/materials/simulink/PV/PV_module_model.pdf



Arc Fault Modeling, Thermal and Structural

Temperature distribution through middle of domain after just 0.2 seconds

Thermo-mechanical modeling

- Simulation and prediction of temperature and mechanical stress effects of arcing given boundary conditions, material properties and geometry
- Simulations provide insights into time scales for arc detection and material selection

2/8/2011, Slide 6 of 6

1.000e-030