Ground Fault Protection Improvement Study

Greg Ball
BEW Engineering (DNV-KEMA)

Solar ABCs Stakeholder Meeting
September 14, 2012
Orlando, FL
Why improve ground fault protection?

- Notable rooftop fires (e.g. Bakersfield, Mt. Holly, NC) resulted from undetected ground faults
- Analysis of faults reveal a “blind spot” problem in grounded PV arrays – faults on the grounded conductors
- Existing ground fault protection (fuse in inverter) generally oversized
 - Designed for ungrounded conductor faults
 - Conservative assumptions of leakage current to avoid nuisance trips
- Ground faults not causing these problems in Europe and elsewhere where ungrounded or floating systems are the norm
- The problem is not going away, and will be more prevalent with aging systems
Solar ABCs study objectives

- Characterize DC and AC leakage currents in existing, large PV arrays (≥100kW)
- Characterize the performance of their ground-fault detection devices.
- Determine the conditions where existing ground-fault protection is inadequate.
- Investigate alternatives for improved detection/protection
 - Minimizing allowable ground fault current
 - Minimizing nuisance tripping
- Develop a consensus-based set of recommendations for:
 - Retrofitting existing systems
 - Functional requirements for new systems
Grounded conductor “blind spot” fault
Below GFDI rating, goes undetected indefinitely
Eventual 2nd fault on ungrounded conductor
High fault current through GFDI
Sustained fault, arcing and fire
Protection by-passed

I = 100s of Amps

RECOMBINER

COMBINER BOX

GROUND CIRCUIT

INVERTER (OFF)

GFDI BLOWN

AC
Field Testing

• Sites selected for:
 – Variety of inverter types
 – Rooftop and ground mount
 – c-Si and thin film
 – Geographic/climate variety
• Tests performed in northern CA, southern CA, North Carolina, and NM (Sandia)
• 10 systems so far, plus several at PVUSA
• Tests conducted:
 – Megger conductors and array to check for existing faults
 – Use differential current device to measure background DC leakage current
 – Use oscilloscope to characterize AC component in ground connection
 – Introduce controlled ground faults to characterize fault current and detection capabilities
Ground-fault test equipment

Megger testing of cables with and without modules in circuit. 50 and 500 V settings. Results unremarkable
Field schematic for introducing ground faults
Simulates blind-spot fault
Representative fault currents

<table>
<thead>
<tr>
<th>Fault Resistance</th>
<th>Rooftop c-Si</th>
<th>Rooftop thin-film</th>
<th>Rooftop c-Si</th>
<th>Ground Mount c-Si</th>
<th>Rooftop c-Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Ω</td>
<td>5.3 mA</td>
<td>9 mA</td>
<td>97 mA</td>
<td>144 mA</td>
<td>340 mA</td>
</tr>
<tr>
<td>5 Ω</td>
<td>11 mA</td>
<td>36 mA</td>
<td>159 mA</td>
<td>277 mA</td>
<td>690 mA</td>
</tr>
<tr>
<td>1 Ω</td>
<td>52 mA</td>
<td>152 mA</td>
<td>660 mA</td>
<td>1.0 A</td>
<td>3.0 A</td>
</tr>
<tr>
<td>0 Ω (short)</td>
<td>542 mA</td>
<td>1.1 A</td>
<td>3.9 A</td>
<td>3.1 A</td>
<td>>5 A TRIP*</td>
</tr>
</tbody>
</table>

- Currents measured with handheld meter at location of fault (shunt measurement)
- Dry conditions for most tests
- Inverter operating during tests
- * One short-circuit test resulted in 5A GFA fast-acting fuse blowing. This prevented the inverter GFI fuse from blowing.
Residual current measurements
Measured at inverter on individual feeder circuits

- Current transformer around positive and negative cable
- CT capability good to 5 mA
- Measured value should be zero if no parallel fault path exists
Residual Current Measurements
Good agreement with measured fault current

<table>
<thead>
<tr>
<th>Ground Fault Resistance Value</th>
<th>Fault Current at the Array (Digital meter)</th>
<th>Residual Current at the Inverter (Bender Device)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Ω</td>
<td>97 mA</td>
<td>98 mA</td>
</tr>
<tr>
<td>5 Ω</td>
<td>159 mA</td>
<td>167 mA</td>
</tr>
<tr>
<td>1 Ω</td>
<td>660 mA</td>
<td>>600 mA</td>
</tr>
<tr>
<td>0 Ω (short)</td>
<td>3.88 A</td>
<td>>600 mA</td>
</tr>
</tbody>
</table>

- Typical results – rooftop system with framed modules
- Differences not considered significant – some measurement variation
- Inverter operating during tests
- Dry conditions
Conclusions so far

- Background DC leakage currents measured in large arrays generally very low (~5-10 mA range or less, measured at inverter)
 - Known to be higher in some systems
- AC component in ground circuit not well characterized due to measurement noise
- Low ground system resistances on healthy systems (< 1 Ω)
- Test ground fault currents measured from mA to 3+ Amps depending on system and fault impedance
- In most cases, fault current in equipment ground conductor (EGC) considerably less than in grounded conductor.
 - One exception: 3A fault current in EGC, 2A in grounded conductor
- Residual current monitoring (RCM) shows excellent capabilities for detecting grounded conductor faults in 10s of mA range
- RCM settings in 40-50 mA range not (yet) causing nuisance trips
- Inverter ground fault fuse ratings can be reduced
Next Steps

• Repeat some tests with wetted arrays to better characterize background leakage current
• Install long term ground current monitoring on sample system(s) to look for changes or variations due to environment, electrical conditions, etc.
• Finalize test reports
• Draft recommendation report for retrofit and new systems
• Meanwhile, the NEC 2014 tentative changes include:
 – Enhanced ground fault protection functionality for grounded systems, possibly daily check of ground impedance
 – More floating systems
 – More arc-fault detection