Photovoltaic Quality Assurance Task Force
PVQAT

John Wohlgemuth

October 23, 2014

Solar ABCs Stakeholders Meeting
Outline

• What is PVQAT?
• History
• Goals of PVQAT
• List of Task Groups
• Efforts Underway
 – Comparative Testing
 – PV Quality Management System
PVQAT

• Effort to develop a PV module rating system that meets needs of all countries and customers – A Single Test Protocol

• Define concepts for creation of standards that allow stakeholders to quickly assess a module’s ability to withstand regional stresses.

• Participation open to all who want to contribute to the effort.

• Program relies on research done by volunteers around the world.

• Effort is to guide world wide research to answer important questions related to testing that predicts outdoor performance of PV modules.
History: International PV Module QA Forum

- Approximately 150 people from around world participated.
- Established the International PV Module QA Task Force – now PVQAT.
- Defined goals of PVQAT
- Prioritized field failure modes observed for crystalline silicon modules
- Established 6 Task Groups, 4 of which were specifically chartered with addressing the prioritized failure modes.
- Provided for future creation of additional Groups.
- Established a Steering Committee and Team Leaders for each Task Group.
Goals of PVQAT

1. To develop a QA rating system that provides comparative information about the relative durability of PV modules to a variety of stresses as a useful tool to PV customers and as a starting point for improving the accuracy of quantitative PV lifetime predictions.
 1) Compare module designs
 2) Provide a basis for manufacturers’ warranties
 3) Provide investors with confidence in their investments
 4) Provide data for setting insurance rates

2. Create a guideline for factory inspections of the QA system used during manufacturing.
Task Groups in PVQAT

1. PV QA Guidelines for Module Manufacturing
2. Testing for thermal and mechanical fatigue
3. Testing for humidity, temperature and voltage
4. Testing for diodes, shading and reverse bias
5. Testing for UV, temperature and humidity
6. Communications of rating information
7. Testing for snow and wind load
8. Testing for thin film modules
9. Testing for CPV
10. Testing for Connectors
11. QA for PV Systems
Three Major Efforts Underway

1. *Qualification of durability of design of products* for chosen climate and mounting - Testing

2. *Guide for audit of consistent manufacturing* of products built to that design – QA System

3. *Certification process for system verification* to ensure adequacy of design, installation, and operation – IECRE *(Assume GK told you about this)*
Key Result 1: Comparative Testing

- Selected 3 climate zones & 2 mounting configurations.
- Identified 3 major field degradation modes:
 - Discoloration of encapsulant
 - Breakage of solder bonds and interconnect ribbons
 - Delamination of encapsulant from glass and/or cells
- Developed test sequence to address these 3 issues
Flow Chart of Proposed Comparative Test Plan

- Visual Inspection
- Initial Stabilization
- Performance at STC
- Insulation Test
- Wet Leakage Current Test

5 modules
- Thermal Cycling Test
 - 500 cycles
 - -40°C to 85°C
 - 0.5 kg weight
- Final Stabilization
- Performance at STC and Diode Function
- Wet Leakage Current Test

5 modules
- UV** at T₁
- Dynamic Mechanical Load*
- 10 Humidity Freeze Cycles
- Damp Heat at 85°C & RH for X

1 module
- Control
- Material Test
- UV Test**

*Details specified in Draft Standard
** UV Exposure TBD

<table>
<thead>
<tr>
<th>Climate</th>
<th>Mounting Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rack</td>
</tr>
<tr>
<td>Moderate</td>
<td>T₁ = 60°C</td>
</tr>
<tr>
<td></td>
<td>RH = 85%</td>
</tr>
<tr>
<td></td>
<td>X = 500 h</td>
</tr>
<tr>
<td>Warm Damp</td>
<td>T₁ = 80°C</td>
</tr>
<tr>
<td></td>
<td>RH = 85%</td>
</tr>
<tr>
<td></td>
<td>X = 1000 h</td>
</tr>
<tr>
<td>Hot Dry</td>
<td>T₁ = 80°C</td>
</tr>
<tr>
<td></td>
<td>RH = 40%</td>
</tr>
<tr>
<td></td>
<td>X = 1000 h</td>
</tr>
</tbody>
</table>
Proposed Rating System

<table>
<thead>
<tr>
<th>IEC 60721-2-1 Climate</th>
<th>Mounting Class</th>
<th>IEC 60721-2-1 Climate</th>
<th>Mounting Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack Mount</td>
<td></td>
<td>Roof Mount</td>
<td></td>
</tr>
<tr>
<td>Moderate (Temperate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leg 1: 500 thermal cycles</td>
<td></td>
<td>Leg 1: 500 thermal cycles</td>
<td></td>
</tr>
<tr>
<td>Leg 2: Increased UV exposure at 60 °C followed by DML, 10 cycles of HF and 500 hours of Damp Heat (85/85)</td>
<td>Leg 2: Increased UV exposure at 80 °C followed by DML, 10 cycles of HF and 500 hours of Damp Heat (85/85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm Damp Equable (Tropical)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leg 1: 500 thermal cycles</td>
<td></td>
<td>Leg 1: 500 thermal cycles</td>
<td></td>
</tr>
<tr>
<td>Leg 2: Increased UV exposure at 80 °C followed by DML, 10 cycles of HF and 1000 hours of Damp Heat (85/40)</td>
<td>Leg 2: Increased UV exposure at 80 °C followed by DML, 10 cycles of HF and 1000 hours of Damp Heat (85/85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremely Warm Dry (Desert)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leg 1: 500 thermal cycles</td>
<td></td>
<td>Leg 1: 500 thermal cycles</td>
<td></td>
</tr>
<tr>
<td>Leg 2: Increased UV exposure at 80 °C followed by DML, 10 cycles of HF and 1000 hours of Damp Heat (85/85)</td>
<td>Leg 2: Increased UV exposure at 100 °C followed by DML, 10 cycles of HF and 1000 hours of Damp Heat (85/40)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparative Testing

- Agreement from thin film Task Group 8 that the proposed testing sequence is as relevant to thin film modules as to crystalline Si.
- Has become an approved IEC TC82 project.
- Committee Draft (CD) has been written and submitted to Working Group 2 for review at Oct WG2 meeting.
PV Quality Management System

• Task Group 1 wrote “Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008”. This document can be found on NREL’s website.

• IEC Central Office indicated that a document with this title and scope could not be developed as an IEC standard.

• Name changed to “IEC 62941 TS – Guideline for increased confidence in PV module design qualification and type approval” and approved as TC82 project.

• Combination of Task Group 1 and WG2 project team prepared a new version as a Committee Draft (CD).

• CD is now out for review by National Committees within TC82 with vote and comments due Oct. 29.

• Provide comments to me for inclusion in official US response.
Questions?

http://www.nrel.gov/pvqat